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Abstract. Developing models and using mathematics are two key practices in
internationally recognized science education standards, such as the Next Gen-
eration Science Standards (NGSS) [1]. However, students often struggle at the
intersection of these practices, i.e., developing mathematical models about scien-
tific phenomena. In this paper, we present the design and initial classroom test of
AI-scaffolded virtual labs that help students practice these competencies. The labs
automatically assess fine-grained sub-components of students’mathematicalmod-
eling competencies based on the actions they take to build theirmathematicalmod-
els within the labs. We describe how we leveraged underlying machine-learned
and knowledge-engineered algorithms to trigger scaffolds, delivered proactively
by a pedagogical agent, that address students’ individual difficulties as they work.
Results show that students who received automated scaffolds for a given practice
on their first virtual lab improved on that practice for the next virtual lab on the
same science topic in a different scenario (a near-transfer task). These findings
suggest that real-time automated scaffolds based on fine-grained assessment data
can help students improve on mathematical modeling.

Keywords: Scaffolding · Intelligent Tutoring System · Science Practices ·
Performance Assessment · Formative Assessment · Science Inquiry ·
Mathematical Modeling · Developing and Using Models · Virtual Lab · Online
Lab · Pedagogical Agent · Next Generation Science Standards Assessment

1 Introduction

To deepen students’ understanding of scientific phenomena and ensure that students are
fully prepared for future careers related to science and mathematics [2], students must
become proficient at key science inquiry practices, i.e., the ways in which scientists
study phenomena. Standards, such as the Next Generation Science Standards (NGSS)
[1], define several such practices, including NGSS Practice 2 (Developing and Using
Models) and Practice 5 (Using Mathematics and Computational Thinking). However,
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the difficulties that students experience with the scientific practices related to using
mathematics and developing models can be barriers for students’ access to and success
in high school science coursework and future STEM careers [3–5]. Specifically, students
often have difficulties developing mathematical models (i.e., graphs) with quantitative
data in science inquiry contexts [6] because they struggle to properly label the axes of
their graphs [7], interpret variables on a graph [8], make connections between equations
and graphs [4], or choose the functional relationship to create a best-fit line or curve
[9, 10]. Thus, students need resources capable of formatively assessing and scaffolding
their competencies in a rigorous, fine-grained way as they work [12, 13] so that they can
develop these critical competencies and, in turn, transfer them across science contexts
[11].

In this paper, we evaluate the design of virtual labs in the Inquiry Intelligent Tutoring
System (Inq-ITS), which are instrumented to automatically assess and scaffold students’
competencies as they conduct investigations and develop mathematical models to rep-
resent and describe science phenomena [14–16]. To do so, we address the following
research question: Did individualized scaffolding, triggered by automated assessment
algorithms, help students improve on their mathematical modeling competencies from
the first virtual lab activity to a second virtual lab activity on the same topic in a different
scenario (i.e., a near-transfer task)?

1.1 Related Work

Some online environments seek to assess and support students’ competencies related to
mathematical modeling for science, such as constructing and exploring computational
models (e.g., Dragoon) [17], drawing qualitative graphs of science phenomenon (e.g.,
WISE) [18], and physics problem solving (e.g., Andes) [19]. However, these environ-
ments do not assess students’ mathematical modeling competencies within the context
of a full science inquiry investigation. Further, they do not provide AI-driven real-time
scaffolding on the full suite of other NGSS practices (e.g., Planning and Conducting
Investigations), all of which are needed for conducting an authentic investigation that
uses mathematical models to make inferences about science phenomena.

Scaffolding in online learning environments for both math and science has yielded
student improvement on competencies by breaking down challenging tasks into smaller
ones [20], providing hints onwhat to do next for studentswho are stuck on a task [21], and
reminding students about the progress and steps taken thus far [20]. While scaffolding
strategies have been applied to the online learning environments for modeling in science
[19, 22], there are no studies, to our knowledge, that investigate the efficacy of AI-driven
scaffolds for mathematical modeling associated with science inquiry, as envisioned by
the practices outlined in the NGSS. Thus, the goal of the current study is to evaluate
the use of real-time automated scaffolding in the Inq-ITS labs to improve students’
competencies on science inquiry and mathematical modeling practices.
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2 Methods

2.1 Participants and Materials

Participants included 70 students across four eighth grade science classes taught by the
same teacher from the same school in the northeastern region of the United States during
Fall 2022. Thirty-one percent of students qualify for free or reduced-price lunch; 71%
identify as White, 16% as Hispanic, and 6% as two or more races.

All students completed two Inq-ITSmathematical modeling virtual labs on the disci-
plinary core idea of Forces and Motion (NGSS DCI PS2.A). Both labs were augmented
with automated scaffolding. Students completed the two labs during their regularly
scheduled classes. In these labs, students used simulations to collect data and develop
mathematical models to demonstrate the relationship between the roughness/friction of
a surface and the acceleration of a moving object on that surface (see Sect. 2.2 for more
details). Inq-ITS automatically assessed students’ competencies using previously vali-
dated educational data-mined and knowledge-engineered algorithms [14, 16, 23], which
triggered scaffolds to students as they worked.

2.2 Inq-ITS Virtual Lab Activities with Mathematical Modeling

The virtual labs consisted of six stages that structured the investigation and captured
different aspects of students’ competencies at several NGSS practices (Table 1, Fig. 1).
The goal of each activity was to develop a mathematical model (i.e., a best-fit curve
represented by a graph and corresponding equation) that can explain how changing one
factor (e.g., roughness of a ramp/road) impacted an outcome (e.g., acceleration of a sled
sliding down that ramp, or acceleration of the truck on the road). Descriptions of each
stage and how each stage aligned to NGSS practices are shown in Table 1.

We consider the tasks presented in both labs as isomorphic, near-transfer tasks [24,
25], since they consisted of the same stages and focused on the same physical science
concept (i.e., the relationship between friction/roughness of a surface and acceleration
of a moving object on that surface). However, the scenarios depicted in the simulations
differed. In the first lab (Truck), students investigated the mathematical relationship
between the roughness/friction of a flat road and the acceleration of the truck on that
road (Fig. 2, left). In the second lab (Ramp), students investigated the mathematical
relationship between the roughness/friction of a ramp and the ending acceleration of
a sled sliding down the ramp (Fig. 2, right). In both cases, students learn that, when
they only change the roughness/friction of the surface (i.e., road/ramp) and keep all
other variables constant, there is a negative linear relationship between the friction of
the surface and the acceleration of the object moving along that surface.

The design of the lab focuses on students’ competencies with inter-related practices
including collecting controlled data [26], plotting/graphing the data [27], and determin-
ing the informal line/curve of best fit [9]without deriving the algebraic equations, which
shifts the focus to modeling the phenomenon rather than completing rote “plug-and-
chug” methods often taught in physics problem-solving contexts [28]. This design not
only helps students more readily identify the similarities in the mathematical and sci-
entific relationship between the variables in the two scenarios (i.e., the friction of the
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road/ramp vs. the acceleration of the truck/sled), but also helps students develop more
sophisticated understandings of the scientific meaning in the graphs, a task with which
students often struggle [29].

Table 1. Stages of the Inq-ITS Mathematical Modeling Virtual Lab Activity

Stage Primary Related NGSS
Practice(s)

Description of Stage

Stage 1:
Hypothesizing/Question
Formation

Practice 1: Asking Questions &
Defining Problems

Students form a question about
the mathematical relationship
between an independent and
dependent variable based on a
given goal (e.g., If I change the
roughness of the ramp, then I
will be able to observe that the
roughness of the ramp and the
acceleration of the sled at the
end of the ramp have a linear
relationship).

Stage 2:
Collecting Data

Practice 3: Planning &
Carrying Out Investigations

Students collect data using a
simulation that can be used to
investigate the relationship
between the variables outlined
in their hypothesis (e.g.,
roughness of the ramp and
acceleration of the sled at the
end of the ramp). The data that
they collect are automatically
stored in a data table.

Stage 3:
Plotting Data

Practice 2:
Developing & Using Models
Practice 5:
Using Mathematics &
Computational Thinking

Students select trials from their
data table to plot on a graph and
select the variables to place on
the x-axis and y-axis of their
graph. Ideally, students should
place their independent variable
(e.g., roughness of the ramp) on
the x-axis and their dependent
variable (e.g., acceleration of the
sled at the end of the ramp) on
the y-axis, and students should
only plot controlled data.

(continued)
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Table 1. (continued)

Stage Primary Related NGSS
Practice(s)

Description of Stage

Stage 4: Building Models Practice 2:
Developing & Using Models
Practice 5:
Using Mathematics &
Computational Thinking

Students select the type of
mathematical relationship that
best fits the shape of the plotted
data (linear, inverse, square,
inverse square, horizontal).
Students also determine the
coefficient and constant for the
equation of the best-fit
curve/line as well as check the
fit (i.e., coefficient of
determination, R2), which is
automatically calculated and
stored in their table along with a
snapshot of their graph and
equation. Ideally, students
should create a model that fits
the data points and demonstrates
the mathematical relationship
between the two variables.
Students are not expected to
calculate the coefficient and
constants for the equation of
their model, but rather they are
expected to use the slider to
create a best-fit curve/line.

Stage 5:
Analyzing Data

Practice 4:
Analyzing & Interpreting Data

Students interpret the results of
their graphs by making a claim
about the relationship between
the variables, identifying if it
was the relationship that they
had initially hypothesized, and
selecting the graphs and
corresponding equations that
best demonstrated this
relationship.

Stage 6:
Communicating Findings

Practice 6: Constructing
Explanations

Students write an explanation of
their findings in the claim,
evidence, and reasoning (CER)
format.
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Fig. 1. Screenshots of Inq-ITSmathematical modeling virtual lab; stages include (1) Hypothesiz-
ing (top left), (2) Collecting Data (top right), (3) Plotting Data (middle left), (4) Building Models
(middle right), (5) Analyzing Data (bottom left), (6) Communicating Findings (bottom right).

2.3 Approach to Automated Assessment and Scaffolding of Science Practices

Inq-ITS automatically assesses and scaffolds their competencies on fine-grained compo-
nents, or “sub-practices,” of the related NGSS practices elicited in each stage of the lab
activity (Table 2). For this study, the automated scoring algorithms were active for the
first four stages of the lab (Hypothesizing, Collecting Data, Plotting Data, and Building
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Fig. 2. The simulation in the Collecting Data stage of the Truck lab (left) and Ramp lab (right).

Models). Automated scoring algorithms for the other stages are in development and thus
out of scope of this study.

Assessment and scaffolding are executed as follows. Each sub-practice is automati-
cally scored as either 0 (incorrect) or 1 (correct) using previously validated educational
data-mined and knowledge-engineered algorithms [14, 23]. The algorithms take as input
the work products created by the student (e.g., their graphs or mathematical models),
and/or distilled features that summarize the steps they followed (e.g., the processes they
used to collect data) [14–16, 23]. If the student completes the task correctly (i.e., receives
1 for all sub-practices), they can proceed to the next stage. If not, individualized scaf-
folding is automatically triggered based on the sub-practices on which the student was
correct or incorrect, and they are prevented from moving forward to the next stage. This
proactive approach was chosen because students often cannot recognize when to ask for
help [30] and because making errors on earlier stages make subsequent stages fruitless
to complete (e.g., it does not make sense to graph data that are completely confounded)
[16]. This approach has shown to be effective in helping students learn and transfer other
science inquiry competencies [31] even after many months [32]; however, to date, we
had not tested this approach with the mathematical modeling competencies described in
this study.

The automated scaffolding appears as an on-screen pop-up message delivered from
a pedagogical agent, Rex. Rex scaffolding messages are specifically designed to orient
and support students on the sub-practice for which they are struggling, explain how the
sub-practice should be completed, and elaborate on why the sub-practice is completed in
that way [30–33]. Students also have the option to ask further predefined questions to the
agent to receive definitions for key terms and further elaborations on how to complete
the sub-practice. If students continue to struggle, the student will eventually receive
a bottom-out hint [30, 33] stating the actions they should take within the system to
move forward in the activity. If the student needs support on multiple sub-practices, the
scaffolds are provided in the priority order that was determined through discussions with
domain experts and teachers familiar with the task and the Inq-ITS system. For example,
if a student is struggling with both the “Good Form” and “Good Fit” sub-practices for
the “BuildingModels” stage (Table 2), the student will receive scaffolding on the “Good
Form” sub-practice first since the student must be able to identify the shape of the data
before fitting the model to the data.
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Fig. 3. Example screenshot of a student struggling with “Math Model has Good Form” sub-
practice, but not with “Math Model has Good Fit” sub-practice (left; note: the student selected an
inverse relationship when they should have chosen a linear relationship, given the variables on
their graph); the first scaffold the student would receive to remediate this difficulty (right).

To illustrate, consider a student who is struggling with choosing the mathematical
functional form that best demonstrates the relationship between variables, a common
difficulty for students [9, 10, 15]. In this case, the student creates a mathematical model
that appears to fit the data points plotted on the graph, but the function chosen for the
model does not best represent the shape of the data in the graph (Fig. 3, left). When the
student chooses tomove on to next stage, the Inq-ITS assessment algorithms use features
of the student’smathematicalmodel, including the shape of themathematicalmodel (e.g.
linear, square), the numerical values chosen for their coefficients and constants, and their
fit scores, to determine that the student built a mathematical model with a “good fit” but
not a “good form” (see Table 2 for sub-practice criteria). Rex then provides feedback to
help the student ensure their model has the correct functional form expected between the
variables selected for their graph. In this example, the first scaffold the student receives
fromRex states, “Your mathematical model won’t help you determine if your hypothesis
is supported or not. Even though it fits the data points closely, its shape does not represent
the trend in your data points.” (Fig. 3, right). If the student continues to struggle on this
sub-practice, the student will receive the next level of scaffold (i.e., a procedural hint),
stating “Let me help you some more. Look at what kind of shape your data points make.
Then, when you select the shape of the graph, choose the option that looks most like
the shape your data points make.” If the student continues to struggle after receiving the
first two scaffolds, the student will receive a bottom-out hint stating, “Let me help you
some more. The shape of your data looks most like linear.” As illustrated, scaffolds are
designed to support students in building their mathematical modeling competencies by
focusing on the fine-grained sub-practice (e.g., choosing the correct functional form)
with which the student is struggling in that moment.

2.4 Measures and Analyses

To measure students’ competencies, students’ stage scores are calculated as the average
of the sub-practice scores for that stage (Table 2) before scaffolding was received (if
any), as has been done in previous studies [32]. Because students may receive multiple
scaffolds addressing different sub-practices on a single stage and the effect of those
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Table 2. Operationalization of Automatically Scored Sub-Practices in the Inq-ITS Virtual Lab

Stage Sub-Practice Criteria

Stage 1:
Hypothesizing

Hypothesis IV A variable that can be changed by
the experimenter was chosen as
the IV in the hypothesis
drop-down menu

Hypothesis IV Goal-Aligned The goal-aligned IV (the IV from
the investigation goal) was chosen
as the IV in the hypothesis
drop-down menu

Hypothesis DV A dependent variable that will be
measured was chosen as the DV in
their hypothesis drop-down menu

Hypothesis DV
Goal-Aligned

The goal-aligned DV (the DV
from the investigation goal) was
chosen as the DV in the
hypothesis drop-down menu

Stage 2:
Collecting Data

Data Collection Tests
Hypothesis

The student collected controlled
data that can be used to develop a
mathematical model
demonstrating the relationship
between the IVs and DVs stated in
the investigation goal. Assessed
by EDM algorithm [23]

Data Collection is
Controlled Experiment

The student collected controlled
data that can be used to develop a
mathematical model
demonstrating the relationship
between any of the changeable
variables and the DV stated in the
investigation goal. Assessed by
EDM algorithm [23]

Data Collection has
Pairwise-IV CVS

The student collected at least two
trials, where only the goal-aligned
IV changes and all other variables
are held constant (i.e., controlled
variable strategy; CVS)

Stage 3:
Plotting Data

Graph’s X-Axis is an IV &
Y-Axis is a DV

Using the drop-down menus, the
student selected one of the
potential IVs for the x-axis of their
graph and one of the potential
DVs for the y-axis of their graph

(continued)
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Table 2. (continued)

Stage Sub-Practice Criteria

Axes of Graph are Goal
Aligned

Using the drop-down menus, the
student selected the goal-aligned
IV for x-axis and the goal-aligned
DV for y-axis

Axes of Graph are
Hypothesis Aligned

The student selected the
hypothesis-aligned IV (i.e., the IV
that the student chose in
hypothesis) as the x-axis of their
graph and the hypothesis-aligned
DV (i.e., the DV that the student
chose in hypothesis) as the y-axis
of their graph

Graph Plotted Controlled
Data

The student only plotted
controlled data with respect to the
variable chosen for the x-axis

Graph Plotted Minimum for
Trend

The student plotted controlled data
with 5 unique values for the
variable chosen for the x-axis.
This number is sufficient to see
mathematical trends for Inq-ITS’
simulation designs

Stage 4: Building Models Math Model has Good Form The student built a model with the
correct mathematical relationship,
based on the variables selected for
the graph’s axes

Math Model has Good Fit The student built a model that fits
the plotted data with at least 70%
fit. This minimum score balances
between students spending too
much effort maximizing fit, and
not having a useful model. It
represents a reasonably strong fit
to the data

(continued)
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Table 2. (continued)

Stage Sub-Practice Criteria

Math Model has Good Fit
and Form

The student built a model that both
has the correct mathematical
relationship based on the variables
selected for the axes of the graph
and fits the plotted data with at
least 70% fit. If the student has
one model with good fit but not
good form and another model with
good form but not good fit, the
student does not get credit

scaffolds may be entangled, we use the measures of students’ overall competencies at
the stage level for this study’s analyses.

To determine the impact of the real-time AI-driven scaffolding, we analyzed how
the scaffolded students’ competencies from the first virtual lab activity (Truck) to the
second virtual lab activity (Ramp). We note that students who received scaffolding
on one stage (e.g., Collecting Data) did not necessarily receive scaffolding on another
stage (e.g., Plotting Data). As such, we examined students’ competencies on each stage
separately to determine students’ improvement on the competency for which they were
helped. Furthermore, to isolate whether each type of scaffolding improved students’
performance on the respective competency, we ran four two-tailed, paired samples t-
tests with a Bonferroni correction (i.e., one for each competency to account for the
chance of false-positive results when running the multiple t-tests).

We recognize that our analytical approach does not account for the effects of scaf-
folding on one competency possibly leading to improvements on other competencies
(despite the student only having received scaffolding on one of the competencies). For
example, a student may receive scaffolding on the Plotting Data stage, which in turn
potentially impacts their performance with fitting the mathematical model to the plotted
data on the subsequent Building Models stage [16]. However, unpacking the correlation
between competencies and how the scaffolding may affect performance on multiple
competencies was outside the scope of this study.

3 Results

We found that, for all stages, the scaffolded students’ competencies increased from
the first lab (Truck) to the second (Ramp; Fig. 2). With a Bonferroni corrected alpha
(0.05/4=.0125), the differences were significant for all four stages (i.e., Hypothesizing,
Collecting Data, Plotting Data, Building Models; Table 3). Further, the effect sizes
(Cohen’s d) were large, suggesting that the automated scaffold was effective at helping
students to improve at those competencies within the Inq-ITS labs.
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Table 3. Average inquiry practice scores across activities and results of paired samples t-tests

Stage N Lab 1: M (SD) Lab 2: M (SD) Within-Subjects Effects

Hypothesizing 27 .41 (.30) .74 (.27) t(26) = −5.45, p < .001, d = 1.05

Collecting Data 37 .58 (.22) .84 (.24) t(36) = −6.05, p < .001, d = 1.00

Plotting Data 24 .63 (.21) .86 (.21) t(23) = −4.12, p < .001, d = .84

Building Models 31 .24 (.20) .59 (.43) t(30) = −4.40, p < .001, d = .79

4 Discussion

Students’ competencies with mathematical modeling practices during science inquiry
are critical for deep science learning [1, 2] and for future STEM courses and careers
[4, 5]. However, students have difficulties with many aspects of mathematical modeling
crucial to analyzing scientific phenomena [6] including those of focus in this study (e.g.,
identifying the functional form in plotted data [9, 10]). When students struggle with
constructing and interpreting graphs in mathematics, it hampers their ability to transfer
those competencies to science contexts [4, 34]. Further, even though these mathematical
modeling competencies are necessary for developing deep understanding of science
phenomena [6, 22, 29], they are not often addressed in science classrooms [7]. Thus,
there is a need for resources that provide immediate, targeted support on the specific
components for which students struggle, when it is optimal for learning [30, 31].

In this study, we found that students who received AI-driven real-time scaffolds dur-
ing a virtual lab improved theirmathematicalmodeling competencieswhen completing a
near-transfer (i.e., isomorphic; [24]) task on the same physical science topic in a different
scenario. These results suggest that scaffolds that address the sub-practices associated
with each of the four stages in the virtual lab (i.e., Hypothesizing, Collecting Data, Plot-
ting Data, and BuildingModels) are beneficial for students’ learning and transfer of their
mathematical modeling competencies. We speculate that students improve because the
lab design operationalized the mathematical modeling practices (e.g., NGSS Practices
2 & 5) into fine-grained sub-practices. More specifically, students were given support
based on their specific difficulties with these fine-grained sub-practices (e.g., labeling
the axes of the graph, identifying the functional form in a graph, etc.). Furthermore,
by addressing concerns raised by others who have articulated the lack of specificity in
the NGSS for assessment purposes [11], we have evidence that our approach toward
operationalizing, assessing, and scaffolding the sub-practices associated with the NGSS
practices can positively impact students’ learning.

Though promising, to better understand the generalizability of students’ improve-
ment as well as whether the improvement occurred because of the scaffolding or because
of the practice opportunities, a randomized controlled experiment with a larger sample
size comparing students’ improvement with scaffolding versus without scaffolding in
the virtual labs will be conducted. Future work will also disentangle how the scaffold-
ing on one practice can impact students’ competencies on other practices and examine
students’ ability to transfer their mathematical modeling competencies across physical
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science topics and assessment contexts outside of Inq-ITS, all of which are critical to
achieve the vision of NGSS [1].
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