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Abstract: Developing proficiency in science practices, including using mathematics, outlined 

in the Next Generation Science Standards is essential for success in STEM courses and future 

careers. However, students often struggle with developing mathematical models, which limits 

their ability to understand scientific phenomena. To improve students' learning and teachers' 

assessment, we extended Inq-ITS to automatically assess and scaffold students' competencies 

in developing mathematical models of scientific phenomena. We analyzed student data from 

six virtual science labs in Inq-ITS at both the practice level and the sub-practice level to 

determine if they maintained their mathematical competencies with scaffolding. By 

operationalizing and analyzing data at the sub-practice level, the results provide valuable 

formative data regarding the challenges students face when developing mathematical models 

about scientific phenomena, which in turn, can inform future scaffolds across science domains. 

Introduction 
Most science classrooms in the United States are guided by the Next Generation Science Standards (NGSS, 2013) 

to develop students' understanding of phenomena and science practices including Using Mathematics (Practice 5) 

and Developing Models (Practice 2). Prior research has shown that students struggle with the mathematical 

modeling competencies needed to develop a deep understanding of scientific phenomena (McDermott et al., 

1987). Since a lack of proficiency in math is a barrier to understanding science (Basson, 2002), addressing these 

challenges, particularly at the high school level when science and math are deeply intertwined, is crucial for better 

preparing students for future STEM majors and careers (Schuchardt & Schunn, 2015; Gottfried & Bozick, 2016).  

In this study, we address two areas of difficulty for students: graphing data collected in science labs and 

determining the proper functional relationship of the model that best fits graphed data. Students commonly 

struggle with constructing, interpreting, and describing graphs while also connecting them to the underlying 

science concepts (Lai et al., 2016; Potgieter et al., 2008; Nixon et al., 2016). The current study investigates 

students' challenges with two types of graphical relationships: linear and inverse square. For tasks in which the 

inverse square law underlies science phenomena, students can struggle to transfer their understanding of the 

algebraic equation to graphical representation (Moynihan et al., 2019). Given that graphical relationships in 

science contexts can vary, and understanding graphing is an essential part of science, students need to understand 

each type of graphical relationship and the differences between them (McKenzie & Padilla, 1986) to deeply 

understand science, particularly physics, phenomena (Angell et al., 2008).  

Though some online learning environments target the mathematical competencies used in science, such 

as dynamic systems modeling (VanLehn et al., 2016) and qualitative graphing (Matuk et al., 2019), these systems 

do not assess and scaffold the full range of NGSS practices necessary for developing deep understandings of 

science phenomena (NGSS, 2013). The platform in the current study, Inq-ITS (Gobert et al., 2013), engages 

students in performance-based formative assessments (i.e., virtual science investigations) covering a wide range 

of NGSS practices, including Carrying Out Investigations (running controlled trials; Sao Pedro et al., 2013) and 

Using Mathematics and Developing Models (mathematical modeling; Adair et al., 2023). Our approach 

operationalizes the NGSS practices into fine-grained sub-practices and leverages AI techniques to both assess 

students while they are working and support them on the specific sub-practices with which they are struggling in 

real-time when support is optimal for learning (Koedinger & Corbett, 2006). This work is grounded by the 

evidence-centered design (ECD) and learning progressions analytics (LPA) frameworks, which describe the use 

of fine-grained data from digital learning systems and ITSs to better understand students’ understanding and skill 

level in science and mathematics (Kubsch et al., 2022). 

 Recent research on Inq-ITS scaffolds for mathematical modeling showed that students receiving 

scaffolds improved their performance on these practices across two labs (Adair et al., 2023). In the present study, 

we extended this research in two ways: RQ1) We analyzed students' competencies across multiple labs, testing 

for the transfer of students' competencies (thereby testing our scaffolds) when the mathematical relationship was 
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 the same (linear) and when the relationship changed to a more complex mathematical relationship (from linear to 

an inverse square) and, RQ2) We identified specific sub-practices for which students had challenges when 

transferring their competencies from a linear to inverse square mathematical relationship.  

Method 
Participants included 41 high school science students in an Applied Physics class taught by one high school 

teacher in the Northeastern region of the United States. The participating school represents students from diverse 

backgrounds, including 29% of students receiving free and reduced lunch and 61% identifying as students of 

color. As part of this research, students worked individually and completed two sets of three Inq-ITS labs (6 labs 

total) that involved mathematical modeling in science during their normally scheduled classes in the Spring of 

2023. Students worked on the second set of labs approximately three weeks after the first set.  

Each lab involves six stages: (1) asking questions about the relationship between variables; 2) collecting 

data; 3) plotting data by selecting axes labels and data points for the graph; 4) building models by creating a best-

fit curve through the data points; 5) forming and warranting claims about the mathematical relationship between 

variables; and 6) explaining findings in a claim, evidence, and reasoning format. Students were auto scaffolded 

in each of the first four stages when the algorithm detected students were struggling (Adair et al., 2023). 

The two sets of Inq-ITS labs focused on Momentum (NGSS DCI PS2.A) and Electricity and Magnetism 

(NGSS DCI PS2.B), respectively. The students had received one lecture on Momentum before completing the 

labs, but no prior instruction was given on Electricity and Magnetism. The goal for each lab was for students to 

develop a mathematical model (i.e., graph and corresponding equation) to describe a scientific phenomenon. In 

the Momentum labs, the investigation involved a toy car moving toward and colliding with another stationary car. 

The goals for the Momentum labs included determining how the: (Lab 1) mass of the moving car affected the 

momentum of the moving car before collision, (Lab 2) velocity of the moving car before collision affects the 

momentum of the system after collision, and (Lab 3) velocity of the moving car before collision affects the 

velocity of the system after collision. In the Electricity & Magnetism labs, the investigation involved a large 

electromagnet picking up scrap metal in a junkyard. The goals for those labs included determining how the: (Lab 

4) number of coil turns in the electromagnet affects the strength of the magnetic field, (Lab 5) amount of current 

through the electromagnet affects the strength of the magnetic field, and (Lab 6) distance of the electromagnet 

from the metal affects the lifting force of the electromagnet. The type of mathematical relationship that best 

demonstrates the scientific phenomena was linear for Labs 1 through 5 and inverse square for Lab 6. 

Measures 

In the present study, we only examined student performance on the third and fourth stages (Plotting Data and 

Building Models), as these stages target students' mathematical modeling competencies related to our NGSS 

practices of interest (i.e., NGSS Practices 2 & 5). Students' competencies in these stages were assessed according 

to fine-grained sub-practices (Adair et al., 2023). Sub-practices for Plotting Data included: selecting appropriate 

variables for the axes, selecting axes that align with the lab goal, selecting axes that align with the hypothesis the 

student generated, plotting only controlled data, and plotting enough data points to see the model trend in the data. 

Sub-practices for Building Models included: building a model with the correct mathematical relationship (i.e., 

linear, inverse square), building a model that fit the data with at least a 70% fit, and building a model that had 

both the correct math relationship and a good fit. Students' sub-practice scores were automatically assessed as 

either 0 (incorrect) or 1 (correct) using knowledge-engineered algorithms that generate scores based on students' 

interactions within the Inq-ITS environment. Students' stage scores were calculated as an average of their sub-

practice scores associated with that stage (Adair et al., 2023). 

Analyses and results 

To determine whether there was a difference between the competency scores for the Plotting Data and Building 

Models stages across the six labs (RQ1), we performed a one-way Multivariate Analysis of Variance (MANOVA) 

with the independent variable as the 6 labs completed by students and the dependent variables as the Plotting Data 

and Building Models competency scores. There was a statistically significant overall difference in competency 

scores across labs F(10, 478) = 6.07, p < .001; Wilk’s Λ = .787, partial η2 = .11. Furthermore, there were 

significantly different competency scores across labs in the Plotting Data stage F(5, 240) = 2.54, p = .029, partial 

η2 = .05 and the Building Models stage F(5, 240) = 7.21, p < .001, partial η2 = .13. The mean competency scores 

for each lab are viewed in Table 1. This sample of participants performed at a high level across labs in both stages, 

except for Building Models in Lab 6 where performance decreased. Even though students performed well overall, 

the standard deviations in both stages (i.e., Plotting Data for Labs 1 to 6 and Building Models for Labs 1 to 5) 

decreased, indicating students continued to improve over time.  
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 As mentioned in the Methods, the phenomena explored in Labs 1 through 5 demonstrated a linear 
graphical relationship, whereas the phenomenon in Lab 6 had an underlying inverse square relationship. To 

understand whether students transferred their mathematical competencies when the underlying relationship 

changed from a linear to inverse square (RQ2), we performed two paired samples t-tests for the Plotting Data and 

Building Model stage, comparing those competency scores on Lab 5 (which explored the linear relationship 

between the amount of current in an electromagnet and the strength of the magnetic field) versus Lab 6 (which 

explored the inverse square relationship between the distance of the electromagnet and the lifting force of the 

electromagnet). One t-test was performed per competency (i.e., Plotting Data and Building Models), at an alpha 

of .025 (see Table 2). There was no significant difference found for Plotting Data, but a significant difference was 

found for Building Models such that students’ performance decreased in Lab 6 when the underlying relationship 

changed from linear to inverse square.  

To better understand the challenges that students experienced with the inverse square task (Lab 6), we 

examined the sub-practices scores for the 12 (out of 41) students who struggled (i.e., required scaffolds) with the 

Building Models stage in Lab 6. Here, upon further investigation of the students’ log data (that recorded all student 

actions for each lab), we noted that all 12 students first selected “inverse” (1/x) to describe the relationship of 

their data, rather than “inverse square” (1/x2). After receiving scaffolds, all 12 students were then able to correctly 

identify the correct inverse square relationship (i.e., where the best-fit model forms a rapidly decreasing curve). 

Though they were incorrect in selecting “inverse” rather than “inverse square” to describe the relationship, they 

were all able to recognize that it was not a linear relationship, as had been the case in the previous 5 labs. Yet, 

they were not yet able to recognize the best-fit curve as “inverse square” upon their first observation of the data. 
 

    Table 1 

    Average Competency Scores in the Plotting Data and Building Models Stages across Inq-ITS Labs  

Description of Lab (Lab #) Plotting Data 

M (SD) 

 Building Models 

M (SD) 

Momentum: Mass vs. Momentum (Lab 1) .90 (.23)  .93 (.22) 

Momentum: Velocity vs. Momentum (Lab 2) .92 (.17)  .98 (.10) 

Momentum: Velocity Before vs. After Collision (Lab 3) .96 (.15)  .98 (.10) 

Magnetism: Coil Turns vs. Magnetic Field Strength (Lab 4) .97 (.13)  .98 (.16) 

Magnetism: Current vs. Magnetic Field Strength (Lab 5) .99 (.05)  1.00 (.00) 

Magnetism: Distance vs. Lifting Force (Lab 6) .99 (.06)  .79 (.35) 
 

      Table 2 

      Results of Paired Samples t-Tests for Lab 5 Competency Scores (Magnetism: Current vs. Magnetic Field 

      Strength) vs Lab 6 Competency Scores (Magnetism: Distance vs. Lifting Force)  

Math Stage N Lab 5 (Linear): 

M (SD) 

Lab 6 (Inverse Square): 

M (SD) 

Within-Subjects Effects 

Plotting Data 41 .99 (.05) .99 (.06) t(40) = -.334, p = .740, d = .06 

Building Models 41 1.0 (.00) .79 (.35) t(40) = 3.89, p < .001, d = .35 

 

Discussion 
In this study, we tested whether students were able to transfer their mathematical modeling competencies across 

multiple labs that explored scientific phenomena with linear and then inverse square relationships. We determined 

that students maintained their high competencies in mathematical modeling stages (i.e., Plotting Data and Building 

Models) across all 6 labs, except for the Building Models stage during Lab 6 where performance decreased. 

Further, the students who struggled to transfer their competencies in the Building Models stage when the 

mathematical relationship changed from linear to inverse square (Lab 6) incorrectly identified the type of 

graphical relationship before receiving scaffolds. These findings suggest that students may need additional 

practice (i.e., more labs) containing an inverse square graph and scaffolding that highlights the differences (i.e., 

different equations and shape of best-fit curve) between an inverse and inverse square graph. In general, knowing 

how to integrate different graphical relationships into scientific investigations contributes to students' 

understanding of scientific phenomena (Angell et al., 2008). Graphing and modeling competencies are particularly 

relevant in high school physics classrooms (McDermott et al., 1987), when students integrate those skills in topics 

such as electricity and magnetism, kinematics, and conservation.  
A limitation of this study was that this sample of students were high-performing in their competencies; 

therefore, there were fewer opportunities to identify student difficulties in plotting data and modeling practices, 

and, in turn, less opportunity to test the efficacy of our scaffolds for these practices. We only tested these six labs 
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 with one classroom teacher. Future work will involve using multiple classrooms from different school districts 

and collecting more data to find student weaknesses and further test the efficacy of Inq-ITS scaffolds.  

Overall, by using Inq-ITS, students are provided with the unique opportunity to engage in authentic 

science investigations involving important mathematical modeling competencies, operationalized into fine-

grained sub-practices, which provide greater specificity to NGSS practices, including 2 and 5 (NGSS, 2013). The 

autoscoring in Inq-ITS generated formative performance-based assessment data that exposed specific areas of 

challenge for students as they transferred their mathematical competencies to a lab containing a different, more 

difficult graphical relationship. The automated scaffolds addressed student difficulties in real-time, which allowed 

them to refine their competencies in a rich inquiry context. As we continue to evaluate students on these practices 

and identify other challenges with mathematical practices embedded in science, we can continue to develop and 

refine our scaffolds to better support students. This level of support is especially important for students who are 

falling behind in math at the high school level, which is a major barrier to understanding science (Basson, 2002). 

In future work, we will also continue to develop, test, and refine assessments and scaffolds for other mathematical 

competencies used in science investigations so that teachers can leverage this technology and its scalable 

assessments to achieve the visions set forth by the NGSS. 
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